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A nickel complex catalyzes a new tandem coupling of
chlorotrimethylsilane (Me3SiCl), o,p-enones 1, alkynes 2, and
di(alkynyl)zincs 7 (R’ = Bu, t-Bu, Me3Si, and Ph) to give the
coupling products 3. This procedure was complementary to the
reaction with alkynyltins.

Tandem reactions, which permit complex molecules to be
reasonably well constructed in a few steps, are an important topic
in organic synthesis.]'3 We have investigated the successive
introduction of carbon units into an alkyne based on a nickel-
catalyzed coupling reaction with organometallics and found a
nickel-catalyzed tandem coupling of o,3-enones 1, 1-alkynes 2,
(phenylethynyl)tin (R’ = Ph) or [(trimethylsilyl)ethynyl]tin (R’ =
MesSi), and chlorotrimethylsilane (Me3SiCl) to give regio- and
stereoselective conjugated enyne compounds 3 (hydrolysis
product 4) in high yields (Scheme 1).4 However, the reaction
with an alkynyltin derivative such as (1-hexynyltin (R’ = Bu)
failed to give a corresponding tandem coupling product. Herein
we report an investigation of the tandem reaction of the more
reactive alkynylzinc derivatives with 1, 2, and Me3SiCl in the
presence of a nickel catalyst.’
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When the reaction of alkynylzinc 5, which was prepared
from diethylzinc (EtzZn, 1 mmol) and 1-hexyne (2a, 1 mmol),®
was carried out with 2-cyclopenten-1-one (1a, 1 mmol), 2a (1.2
mmol), and Me3SiCl (1.2 mmol) in the presence of Ni(acac)2
(0.05 mmol) in THF at room temperature, the expected tandem
coupling product was not obtained (Eq. 1 and Run 1 in Table 1).
The same result was obtained for the reaction with {(hex-1-

yn)yl]zinc chloride (6), prepared from zinc chloride (ZnClk, 1
mmol) and 1-hexynyllithium (1 mmol) (Run 2 in Table 1). On
the other hand, when dif(hex-1-yn)yl]zinc (7a), prepared from
ZnClz (1 mmol) and 2 equivalents of 1-hexynyllithium, was
treated with the reaction mixture, 4a (after the hydrolysis of 3a)
was obtained in 67% isolated yield and 88% regioselectivity
(based on 'H NMR spectra) (Run 3 in Table 1).7 In this
reaction, a product arising from the conjugated addition of
alkynyl unit to 1a was not detected. The use of a ligand (0.1
mmol) such as triphenylphosphine (PPh3) or pyridine led to a
reduction in regioselectivity (Runs 4 and 5 in Table 1).
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Table 1. The nickel-catalyzed tandem coupling of 1a, 2a,
alkynylzinc, and Me;SiC1*

Run Alkynylzinc Additive Yield /%P Ratio of 4afisomer®

1 5 no trace -
2 6 no trace -
3 7a no 67 88:12
4 7a PPhs 64 80:20
5 7a pyridine 62 80:20

The reaction was done as described in the text. ?Combined yield
of 4a and its regioisomer. “Determined by 'H NMR spectra.

The results of the nickel-catalyzed tandem coupling of 1, 2,
7, and Me3SiCl are summarized in Chart 1.7 Di{1-(3,3-
dimethylbut-1-yn)yl]zinc (7b, R’ = -Bu) was reacted with 1a
and tert-butylacetylene (2b) to give 4b, although the
regioselectivity was decreased to 66%. Products 4c and 4d were
synthesized via reaction with di(alkynyl)zincs 7¢ (R’ = MesSi)
and 7d (R’ = Ph) derived from (trimethylsilyl)acetylene (2¢, R =
MesSi) and phenylacetylene (2d, R = Ph), respectively, with
high regioselectivities. The stereochemistry of 4¢c was assigned
to an E-geometry by NOE experiment. A reaction with six-
membered enones 1b (n = 1) gave a mixture of 4e and its
regioisomer in 62% yield (4e/isomer = 88:12).
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When R! in 2 and R2 in 7 are different (R! # R2), the
interesting behavior was observed in the reaction. Thus, the
reaction of 1a with 2d (R = Ph) and 7a (R’ = Bu) proceeded to
give the corresponding 4f in 54% isolated yield as the sole
product (Eq. 2).7 On the other hand, when the reaction with 2a
(R = Bu) and 7d (R’ = Ph) was carried out under the same
reaction conditions, 4d (28% yield) was obtained along with the
desired product 4g (44% yield, 90% regioselectivity) (Eq. 3).
Although the details are not clear, these results would be
dependent on difference of the reactivities of alkynes 2 and 2’

Bu
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and alkynylzincs 7 and 7°, which were generated from the
equilibrium between 2 and 7 (Scheme 2).8

In summary, di(alkynyl)zincs 7 allowed to react with
enones 1 and alkynes 2 in the presence of a nickel catalyst and

Me3SiCl at room temperature to give tandem coupling products 3
(the hydrolysis products 4). This procedure is complementary to
the reaction with alkynyltins.4
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